Სარჩევი:
- ნაბიჯი 1: საჭირო აპარატურა:
- ნაბიჯი 2: აპარატურის დაკავშირება:
- ნაბიჯი 3: ტემპერატურისა და ტენიანობის გაზომვის კოდი:
- ნაბიჯი 4: პროგრამები:
ვიდეო: ტემპერატურისა და ტენიანობის გაზომვა HDC1000 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
2024 ავტორი: John Day | [email protected]. ბოლოს შეცვლილი: 2024-01-30 10:17
HDC1000 არის ციფრული ტენიანობის სენსორი ინტეგრირებული ტემპერატურის სენსორით, რომელიც უზრუნველყოფს გაზომვის სიზუსტეს ძალიან დაბალი სიმძლავრის დროს. მოწყობილობა ზომავს ტენიანობას ახალი capacitive სენსორის საფუძველზე. ტენიანობისა და ტემპერატურის სენსორები ქარხნულად დაკალიბრებულია. ის ფუნქციონირებს სრული -40 ° C– დან +125 ° C ტემპერატურის დიაპაზონში.
ამ სახელმძღვანელოში ილუსტრირებულია HDC1000 სენსორის მოდულის ინტერფეისი ნაწილაკების ფოტონთან. ტემპერატურისა და ტენიანობის მნიშვნელობების წასაკითხად, ჩვენ გამოვიყენეთ ნაწილაკი I2c ადაპტერით. ეს I2C ადაპტერი სენსორულ მოდულთან კავშირს აადვილებს და უფრო საიმედო გახდის.
ნაბიჯი 1: საჭირო აპარატურა:
მასალები, რომლებიც ჩვენ გვჭირდება ჩვენი მიზნის მისაღწევად, მოიცავს შემდეგ ტექნიკურ კომპონენტებს:
1. HDC1000
2. ნაწილაკების ფოტონი
3. I2C კაბელი
4. I2C ფარი ნაწილაკების ფოტონისთვის
ნაბიჯი 2: აპარატურის დაკავშირება:
აპარატურის დაკავშირების განყოფილება ძირითადად განმარტავს გაყვანილობის კავშირებს სენსორსა და ნაწილაკ ფოტონს შორის. სწორი კავშირების უზრუნველყოფა არის ძირითადი აუცილებლობა ნებისმიერ სისტემაზე მუშაობისას სასურველი გამომუშავებისთვის. ამრიგად, საჭირო კავშირები შემდეგია:
HDC1000 იმუშავებს I2C– ზე. აქ არის გაყვანილობის დიაგრამა, რომელიც აჩვენებს, თუ როგორ უნდა დააკავშიროთ სენსორის თითოეული ინტერფეისი.
ყუთის გარეშე, დაფა კონფიგურირებულია I2C ინტერფეისისთვის, ამიტომ ჩვენ გირჩევთ გამოიყენოთ ეს კავშირი, თუ სხვაგვარად ხართ აგნოსტიკოსი.
ყველაფერი რაც თქვენ გჭირდებათ არის ოთხი მავთული! მხოლოდ ოთხი კავშირია საჭირო Vcc, Gnd, SCL და SDA ქინძისთავები და ეს დაკავშირებულია I2C კაბელის დახმარებით.
ეს კავშირები ნაჩვენებია ზემოთ მოცემულ სურათებში.
ნაბიჯი 3: ტემპერატურისა და ტენიანობის გაზომვის კოდი:
დავიწყოთ ნაწილაკების კოდით ახლა.
ნაწილაკთან ერთად სენსორული მოდულის გამოყენებისას ჩვენ ვიყენებთ application.h და spark_wiring_i2c.h ბიბლიოთეკას. "application.h" და spark_wiring_i2c.h ბიბლიოთეკა შეიცავს ფუნქციებს, რომლებიც ხელს უწყობს სენსორსა და ნაწილაკს შორის i2c კომუნიკაციას.
მომხმარებლის ნაწილის მოხერხებულობისთვის ქვემოთ მოცემულია ნაწილაკების მთელი კოდი:
#ჩართეთ
#ჩართეთ
// HDC1000 I2C მისამართი არის 0x40 (64)
#განსაზღვრეთ Addr 0x40
ორმაგი cTemp = 0.0, fTemp = 0.0, ტენიანობა = 0.0;
int temp = 0, hum = 0;
ბათილად დაყენება ()
{
// ცვლადის დაყენება
ნაწილაკი. ცვლადი ("i2cdevice", "HDC1000");
ნაწილაკი. ცვალებადი ("ტენიანობა", ტენიანობა);
ნაწილაკი. ცვლადი ("cTemp", cTemp);
// I2C კომუნიკაციის ინიციალიზაცია
Wire.begin ();
// სერიული კომუნიკაციის ინიციალიზაცია, დაყენებული baud განაკვეთი = 9600
სერიული.დაწყება (9600);
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// კონფიგურაციის რეგისტრის არჩევა
Wire.write (0x02);
// ტემპერატურა, ტენიანობა ჩართულია, გარჩევადობა = 14 ბიტი, გამათბობელი ჩართულია
Wire.write (0x30);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
დაგვიანება (300);
}
ბათილი მარყუჟი ()
{
ხელმოუწერელი int მონაცემები [2];
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// ტემპერატურის გაზომვის ბრძანების გაგზავნა
Wire.write (0x00);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
დაგვიანება (500);
// მოითხოვეთ მონაცემების 2 ბაიტი
მავთული. მოთხოვნა (Addr, 2);
// წაიკითხეთ 2 ბაიტი მონაცემები
// temp msb, temp lsb
თუ (Wire. Available () == 2)
{
მონაცემები [0] = Wire.read ();
მონაცემები [1] = Wire.read ();
}
// მონაცემების კონვერტაცია
temp = ((მონაცემები [0] * 256) + მონაცემები [1]);
cTemp = (temp / 65536.0) * 165.0 - 40;
fTemp = cTemp * 1.8 + 32;
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// ტენიანობის გაზომვის ბრძანების გაგზავნა
Wire.write (0x01);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
დაგვიანება (500);
// მოითხოვეთ მონაცემების 2 ბაიტი
მავთული. მოთხოვნა (Addr, 2);
// წაიკითხეთ 2 ბაიტი მონაცემები
// temp msb, temp lsb
თუ (Wire. Available () == 2)
{
მონაცემები [0] = Wire.read ();
მონაცემები [1] = Wire.read ();
}
// მონაცემების კონვერტაცია
hum = ((მონაცემები [0] * 256) + მონაცემები [1]);
ტენიანობა = (hum / 65536.0) * 100.0;
// მონაცემების გამოტანა საინფორმაციო დაფაზე
Particle.publish ("ფარდობითი ტენიანობა:", სიმებიანი (ტენიანობა));
დაგვიანება (1000);
Particle.publish ("ტემპერატურა ცელსიუსში:", სიმებიანი (cTemp));
დაგვიანება (1000);
Particle.publish ("ტემპერატურა ფარენჰეიტში:", სიმებიანი (fTemp));
დაგვიანება (1000);
}
Particle.variable () ფუნქცია ქმნის ცვლადებს სენსორის გამომუშავების შესანახად და Particle.publish () ფუნქცია აჩვენებს გამომავალს საიტის დაფაზე.
სენსორის გამომავალი ნაჩვენებია ზემოთ მოცემულ სურათზე თქვენი მითითებისთვის.
ნაბიჯი 4: პროგრამები:
HDC1000 შეიძლება გამოყენებულ იქნას გათბობის, ვენტილაციისა და კონდიცირების (HVAC), ჭკვიანი თერმოსტატების და ოთახის მონიტორებში. ეს სენსორი ასევე პოულობს მის გამოყენებას პრინტერებში, ხელის მრიცხველებში, სამედიცინო მოწყობილობებში, ტვირთების გადაზიდვაში, ასევე ავტომობილის საქარე მინაზე.
გირჩევთ:
ტენიანობის გაზომვა HYT939 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ტენიანობის გაზომვა HYT939 და ნაწილაკების ფოტონის გამოყენებით: HYT939 არის ციფრული ტენიანობის სენსორი, რომელიც მუშაობს I2C საკომუნიკაციო პროტოკოლზე. ტენიანობა არის გადამწყვეტი პარამეტრი, როდესაც საქმე ეხება სამედიცინო სისტემებსა და ლაბორატორიებს, ამიტომ ამ მიზნების მისაღწევად ჩვენ შევეცადეთ HYT939 დავამყაროთ ჟოლოს პითან. ᲛᲔ
ტემპერატურისა და ტენიანობის გაზომვა HDC1000 და არდუინო ნანოს გამოყენებით: 4 ნაბიჯი
ტემპერატურისა და ტენიანობის გაზომვა HDC1000 და არდუინო ნანოს გამოყენებით: HDC1000 არის ციფრული ტენიანობის სენსორი ინტეგრირებული ტემპერატურის სენსორით, რომელიც უზრუნველყოფს გაზომვის სიზუსტეს ძალიან დაბალ ენერგიაზე. მოწყობილობა ზომავს ტენიანობას ახალი capacitive სენსორის საფუძველზე. ტენიანობისა და ტემპერატურის სენსორები არის
ტემპერატურისა და ტენიანობის მონიტორინგი SHT25 და ნაწილაკების ფოტონის გამოყენებით: 5 ნაბიჯი
ტემპერატურისა და ტენიანობის მონიტორინგი SHT25 და ნაწილაკების ფოტონის გამოყენებით: ჩვენ ახლახანს ვიმუშავეთ სხვადასხვა პროექტზე, რომელიც მოითხოვდა ტემპერატურისა და ტენიანობის მონიტორინგს და შემდეგ მივხვდით, რომ ეს ორი პარამეტრი ფაქტობრივად გადამწყვეტ როლს ასრულებს სისტემის მუშაობის ეფექტურობის შეფასებაში. ორივე ინდუსტრიაში
ტენიანობის და ტემპერატურის გაზომვა HIH6130 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ტენიანობის და ტემპერატურის გაზომვა HIH6130 და ნაწილაკების ფოტონის გამოყენებით: HIH6130 არის ტენიანობის და ტემპერატურის სენსორი ციფრული გამომუშავებით. ეს სენსორები უზრუნველყოფენ სიზუსტეს of 4% RH. ინდუსტრიის წამყვანი გრძელვადიანი სტაბილურობით, ჭეშმარიტი ტემპერატურის კომპენსირებული ციფრული I2C, ინდუსტრიის წამყვანი საიმედოობით, ენერგოეფექტურობით
ტენიანობის და ტემპერატურის გაზომვა HTS221 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ტენიანობის და ტემპერატურის გაზომვა HTS221 და ნაწილაკების ფოტონის გამოყენებით: HTS221 არის ულტრა კომპაქტური capacitive ციფრული სენსორი ფარდობითი ტენიანობისა და ტემპერატურისათვის. იგი მოიცავს შეგრძნების ელემენტს და შერეული სიგნალის პროგრამის სპეციფიკურ ინტეგრირებულ წრეს (ASIC), რათა უზრუნველყოს გაზომვის ინფორმაცია ციფრული სერიული საშუალებით