Სარჩევი:
- ნაბიჯი 1: საჭირო აპარატურა:
- ნაბიჯი 2: აპარატურის დაკავშირება:
- ნაბიჯი 3: დაჩქარების გაზომვის კოდი:
- ნაბიჯი 4: პროგრამები:
ვიდეო: დაჩქარების გაზომვა BMA250 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
2024 ავტორი: John Day | [email protected]. ბოლოს შეცვლილი: 2024-01-30 10:17
BMA250 არის პატარა, თხელი, ულტრა დაბალი სიმძლავრის, 3 ღერძიანი ამაჩქარებელი მაღალი გარჩევადობის (13 ბიტიანი) გაზომვით ± 16 გ-მდე. ციფრული გამომავალი მონაცემები არის ფორმატირებული, როგორც 16 ბიტიანი ორეული და ხელმისაწვდომია I2C ციფრული ინტერფეისის საშუალებით. იგი ზომავს სიმძიმის სტატიკურ აჩქარებას დახრის მგრძნობიარე პროგრამებში, ასევე მოძრაობის ან დარტყმის შედეგად წარმოქმნილ დინამიურ აჩქარებას. მისი მაღალი გარჩევადობა (3.9 მგ/LSB) საშუალებას გაძლევთ გაზომოთ დახრილობის ცვლილებები 1.0 ° -ზე ნაკლები.
ამ გაკვეთილში ჩვენ ვაპირებთ გაზომოთ აჩქარება სამივე პერპენდიკულარულ ღერძში BMA250 და ნაწილაკების ფოტონის გამოყენებით.
ნაბიჯი 1: საჭირო აპარატურა:
მასალები, რომლებიც ჩვენ გვჭირდება ჩვენი მიზნის მისაღწევად, მოიცავს შემდეგ ტექნიკურ კომპონენტებს:
1. BMA250
2. ნაწილაკების ფოტონი
3. I2C კაბელი
4. ნაწილაკების ფოტონის I2C ფარი
ნაბიჯი 2: აპარატურის დაკავშირება:
აპარატურის დაკავშირების განყოფილება ძირითადად განმარტავს გაყვანილობის კავშირებს სენსორსა და ნაწილაკ ფოტონს შორის. სწორი კავშირების უზრუნველყოფა არის ძირითადი აუცილებლობა ნებისმიერ სისტემაზე მუშაობისას სასურველი გამომუშავებისთვის. ამრიგად, საჭირო კავშირები შემდეგია:
BMA250 იმუშავებს I2C– ზე. აქ არის გაყვანილობის დიაგრამა, რომელიც აჩვენებს, თუ როგორ უნდა დააკავშიროთ სენსორის თითოეული ინტერფეისი.
ყუთის გარეშე, დაფა კონფიგურირებულია I2C ინტერფეისისთვის, ამიტომ ჩვენ გირჩევთ გამოიყენოთ ეს კავშირი, თუ სხვაგვარად ხართ აგნოსტიკოსი. ყველაფერი რაც თქვენ გჭირდებათ არის ოთხი მავთული!
მხოლოდ ოთხი კავშირია საჭირო Vcc, Gnd, SCL და SDA ქინძისთავები და ეს დაკავშირებულია I2C კაბელის დახმარებით.
ეს კავშირები ნაჩვენებია ზემოთ მოცემულ სურათებში.
ნაბიჯი 3: დაჩქარების გაზომვის კოდი:
დავიწყოთ ნაწილაკების კოდით ახლა.
სენსორული მოდულის arduino– ს გამოყენებისას, ჩვენ ვიყენებთ application.h და spark_wiring_i2c.h ბიბლიოთეკას. "application.h" და spark_wiring_i2c.h ბიბლიოთეკა შეიცავს ფუნქციებს, რომლებიც ხელს უწყობს სენსორსა და ნაწილაკს შორის i2c კომუნიკაციას.
მომხმარებლის ნაწილის მოხერხებულობისთვის ქვემოთ მოცემულია ნაწილაკების მთელი კოდი:
#ჩართეთ
#ჩართეთ
// BMA250 I2C მისამართი არის 0x18 (24)
#განსაზღვრეთ Addr 0x18
int xAccl = 0, yAccl = 0, zAccl = 0;
ბათილად დაყენება ()
{
// ცვლადის დაყენება
ნაწილაკი. ცვლადი ("i2cdevice", "BMA250");
ნაწილაკი. ცვლადი ("xAccl", xAccl);
ნაწილაკი. ცვლადი ("yAccl", yAccl);
ნაწილაკი. ცვლადი ("zAccl", zAccl);
// I2C კომუნიკაციის ინიციალიზაცია როგორც MASTER
Wire.begin ();
// სერიული კომუნიკაციის ინიციალიზაცია, დააყენეთ baud rate = 9600
სერიული.დაწყება (9600);
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// დიაპაზონის შერჩევის რეგისტრის არჩევა
Wire.write (0x0F);
// დიაპაზონის დაყენება +/- 2 გ
Wire.write (0x03);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// გამტარუნარიანობის რეგისტრატორის არჩევა
Wire.write (0x10);
// სიჩქარის დაყენება 7.81 ჰერცი
Wire.write (0x08);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
დაგვიანება (300);}
ბათილი მარყუჟი ()
{
ხელმოუწერელი int მონაცემები [0];
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// აირჩიეთ მონაცემთა რეგისტრატორები (0x02 - 0x07)
Wire.write (0x02);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
// მოითხოვეთ 6 ბაიტი
მავთული. მოთხოვნა (Addr, 6);
// წაიკითხეთ ექვსი ბაიტი
// xAccl lsb, xAccl msb, yAccl lsb, yAccl msb, zAccl lsb, zAccl msb
თუ (Wire. Available () == 6)
{
მონაცემები [0] = Wire.read ();
მონაცემები [1] = Wire.read ();
მონაცემები [2] = Wire.read ();
მონაცემები [3] = Wire.read ();
მონაცემები [4] = Wire.read ();
მონაცემები [5] = Wire.read ();
}
დაგვიანება (300);
// გადააკეთეთ მონაცემები 10 ბიტად
xAccl = ((მონაცემები [1] * 256) + (მონაცემები [0] & 0xC0)) / 64;
თუ (xAccl> 511)
{
xAccl -= 1024;
}
yAccl = ((მონაცემები [3] * 256) + (მონაცემები [2] & 0xC0)) / 64;
თუ (yAccl> 511)
{
yAccl -= 1024;
}
zAccl = ((მონაცემები [5] * 256) + (მონაცემები [4] & 0xC0)) / 64;
if (zAccl> 511)
{
zAccl -= 1024;
}
// მონაცემების გამოტანა საინფორმაციო დაფაზე
Particle.publish ("დაჩქარება X- ღერძში:", სიმებიანი (xAccl));
დაგვიანება (1000);
Particle.publish ("აჩქარება Y- ღერძში:", სიმებიანი (yAccl));
დაგვიანება (1000);
Particle.publish ("აჩქარება Z- ღერძში:", სიმებიანი (zAccl));
დაგვიანება (1000);
}
Particle.variable () ფუნქცია ქმნის ცვლადებს სენსორის გამომუშავების შესანახად და Particle.publish () ფუნქცია აჩვენებს გამომავალს საიტის დაფაზე.
სენსორის გამომავალი ნაჩვენებია ზემოთ მოცემულ სურათზე თქვენი მითითებისთვის.
ნაბიჯი 4: პროგრამები:
BMA250– ის მსგავსი აქსელერომეტრები უმეტესად პოულობენ მის გამოყენებას თამაშებში და პროფილის ჩვენების შეცვლაში. ეს სენსორული მოდული ასევე გამოიყენება მობილური პროგრამებისთვის ენერგიის მართვის მოწინავე სისტემაში. BMA250 არის ტრაქსიალური ციფრული დაჩქარების სენსორი, რომელიც ინტეგრირებულია ჩიპური მოძრაობის ინტელექტუალური შეწყვეტის კონტროლერთან.
გირჩევთ:
აჩქარების გაზომვა ADXL345 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ADXL345 და ნაწილაკების ფოტონის გამოყენებით აჩქარების გაზომვა: ADXL345 არის პატარა, თხელი, ულტრა დაბალი სიმძლავრის, 3 ღერძიანი ამაჩქარებელი მაღალი გარჩევადობის (13 ბიტიანი) გაზომვით ± 16 გ-მდე. ციფრული გამომავალი მონაცემები ფორმატირებულია, როგორც 16 ბიტიანი ორეული და არის ხელმისაწვდომი I2 C ციფრული ინტერფეისის საშუალებით. ზომავს
მაგნიტური ველის გაზომვა HMC5883 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
მაგნიტური ველის გაზომვა HMC5883 და ნაწილაკების ფოტონის გამოყენებით: HMC5883 არის ციფრული კომპასი, რომელიც შექმნილია დაბალი ველის მაგნიტური ზონდირებისათვის. ამ მოწყობილობას აქვს მაგნიტური ველის ფართო დიაპაზონი +/- 8 Oe და გამომავალი სიჩქარე 160 ჰც. HMC5883 სენსორი მოიცავს სამაგრების ავტომატური მოხსნას დრაივერებზე, ოფსეტური გაუქმებით და
ტენიანობის გაზომვა HYT939 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ტენიანობის გაზომვა HYT939 და ნაწილაკების ფოტონის გამოყენებით: HYT939 არის ციფრული ტენიანობის სენსორი, რომელიც მუშაობს I2C საკომუნიკაციო პროტოკოლზე. ტენიანობა არის გადამწყვეტი პარამეტრი, როდესაც საქმე ეხება სამედიცინო სისტემებსა და ლაბორატორიებს, ამიტომ ამ მიზნების მისაღწევად ჩვენ შევეცადეთ HYT939 დავამყაროთ ჟოლოს პითან. ᲛᲔ
დაჩქარების გაზომვა BMA250 და არდუინო ნანოს გამოყენებით: 4 ნაბიჯი
დაჩქარების გაზომვა BMA250 და Arduino Nano– ს გამოყენებით: BMA250 არის პატარა, თხელი, ულტრა დაბალი სიმძლავრის, 3 ღერძიანი ამაჩქარებელი მაღალი გარჩევადობის (13 ბიტიანი) გაზომვით ± 16 გ-მდე. ციფრული გამომავალი მონაცემები არის ფორმატირებული, როგორც 16 ბიტიანი ორეული და ხელმისაწვდომია I2C ციფრული ინტერფეისის საშუალებით. ზომავს სტატიკურ
დაჩქარების გაზომვა BMA250 და ჟოლოს Pi გამოყენებით: 4 ნაბიჯი
დაჩქარების გაზომვა BMA250 და Raspberry Pi გამოყენებით: BMA250 არის პატარა, თხელი, ულტრაწონიანი, 3 ღერძიანი ამაჩქარებელი მაღალი გარჩევადობის (13-ბიტიანი) გაზომვით ± 16 გ-მდე. ციფრული გამომავალი მონაცემები არის ფორმატირებული, როგორც 16 ბიტიანი ორეული და ხელმისაწვდომია I2C ციფრული ინტერფეისის საშუალებით. ზომავს სტატიკურ