Სარჩევი:
- ნაბიჯი 1: საჭირო აპარატურა:
- ნაბიჯი 2: აპარატურის დაკავშირება:
- ნაბიჯი 3: ტემპერატურის გაზომვის კოდი:
- ნაბიჯი 4: პროგრამები:
ვიდეო: ტემპერატურის მონიტორინგი MCP9808 და Arduino Nano გამოყენებით: 4 ნაბიჯი
2024 ავტორი: John Day | [email protected]. ბოლოს შეცვლილი: 2024-01-30 10:17
MCP9808 არის უაღრესად ზუსტი ციფრული ტემპერატურის სენსორი ± 0.5 ° C I2C მინი მოდული. ისინი განასახიერებენ მომხმარებლის მიერ პროგრამირებადი რეგისტრებით, რომლებიც ხელს უწყობენ ტემპერატურის მგრძნობიარე პროგრამებს. MCP9808 მაღალი სიზუსტის ტემპერატურის სენსორი გახდა ინდუსტრიის სტანდარტი ფორმის ფაქტორისა და ინტელექტის თვალსაზრისით, რომელიც უზრუნველყოფს კალიბრირებულ, ხაზოვანი სენსორული სიგნალების ციფრულ, I2C ფორმატში.
ამ გაკვეთილში ნაჩვენებია MCP9808 სენსორული მოდულის ინტერფეისი არდუინო ნანოსთან. ტემპერატურის მნიშვნელობების წასაკითხად, ჩვენ გამოვიყენეთ ჟოლოს პი I2c ადაპტერით. ეს I2C ადაპტერი სენსორულ მოდულთან კავშირს ხდის ადვილი და საიმედო.
ნაბიჯი 1: საჭირო აპარატურა:
მასალები, რომლებიც ჩვენ გვჭირდება ჩვენი მიზნის მისაღწევად, მოიცავს შემდეგ ტექნიკურ კომპონენტებს:
1. MCP9808
2. არდუინო ნანო
3. I2C კაბელი
4. I2C ფარი არდუინო ნანოსთვის
ნაბიჯი 2: აპარატურის დაკავშირება:
აპარატურის დაკავშირების განყოფილება ძირითადად განმარტავს გაყვანილობის კავშირებს სენსორსა და არდუინო ნანოს შორის. სწორი კავშირების უზრუნველყოფა არის ძირითადი აუცილებლობა ნებისმიერ სისტემაზე მუშაობისას სასურველი გამომუშავებისთვის. ამრიგად, საჭირო კავშირები შემდეგია:
MCP9808 იმუშავებს I2C– ზე. აქ არის გაყვანილობის დიაგრამა, რომელიც აჩვენებს, თუ როგორ უნდა დააკავშიროთ სენსორის თითოეული ინტერფეისი.
ყუთის გარეშე, დაფა კონფიგურირებულია I2C ინტერფეისისთვის, ამიტომ ჩვენ გირჩევთ გამოიყენოთ ეს კავშირი, თუ სხვაგვარად ხართ აგნოსტიკოსი. ყველაფერი რაც თქვენ გჭირდებათ არის ოთხი მავთული!
მხოლოდ ოთხი კავშირია საჭირო Vcc, Gnd, SCL და SDA ქინძისთავები და ეს დაკავშირებულია I2C კაბელის დახმარებით.
ეს კავშირები ნაჩვენებია ზემოთ მოცემულ სურათებში.
ნაბიჯი 3: ტემპერატურის გაზომვის კოდი:
დავიწყოთ არდუინოს კოდით ახლა.
Arduino– სთან ერთად სენსორული მოდულის გამოყენებისას, ჩვენ მოიცავს Wire.h ბიბლიოთეკას. "მავთულის" ბიბლიოთეკა შეიცავს ფუნქციებს, რომლებიც ხელს უწყობს სენსორსა და არდუინოს დაფას შორის i2c კომუნიკაციას.
მთელი Arduino კოდი მოცემულია მომხმარებლის კომფორტისთვის ქვემოთ:
#ჩართეთ
// MCP9808 I2C მისამართი არის 0x18 (24)
#განსაზღვრეთ Addr 0x18
ბათილად დაყენება ()
{
// I2C კომუნიკაციის ინიციალიზაცია, როგორც MASTER
Wire.begin ();
// სერიული კომუნიკაციის ინიციალიზაცია, დაყენებული baud განაკვეთი = 9600
სერიული.დაწყება (9600);
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// კონფიგურაციის რეგისტრის არჩევა
Wire.write (0x01);
// კონვერტაციის უწყვეტი რეჟიმი, Power-up default
Wire.write (0x00);
Wire.write (0x00);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (Addr);
// აირჩიეთ რეზოლუციის რეგისტრი
Wire.write (0x08);
// რეზოლუცია = +0.0625 / C
Wire.write (0x03);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
}
ბათილი მარყუჟი ()
{
ხელმოუწერელი int მონაცემები [2];
// იწყებს I2C კომუნიკაციას
Wire.beginTransmission (Addr);
// მონაცემთა რეგისტრაციის არჩევა
Wire.write (0x05);
// შეაჩერე I2C გადაცემა
Wire.endTransmission ();
// მოითხოვეთ მონაცემების 2 ბაიტი
მავთული. მოთხოვნა (Addr, 2);
// წაიკითხეთ 2 ბაიტი მონაცემები
// ტემპი MSB, ტემპი LSB
თუ (Wire. Available () == 2)
{
მონაცემები [0] = Wire.read ();
მონაცემები [1] = Wire.read ();
}
// გადააკეთეთ მონაცემები 13 ბიტიანი
int temp = ((მონაცემები [0] & 0x1F) * 256 + მონაცემები [1]);
თუ (ტემპერატურა> 4095)
{
ტემპერატურა -= 8192;
}
float cTemp = temp * 0.0625;
float fTemp = cTemp * 1.8 + 32;
// მონაცემების გამოტანა ეკრანზე
Serial.print ("ტემპერატურა ცელსიუსში:");
Serial.println (cTemp);
Serial.println ("C");
Serial.print ("ტემპერატურა ფარენჰეიტში:");
Serial.println (fTemp);
Serial.println ("F");
დაგვიანება (500);
}
მავთულის ბიბლიოთეკაში Wire.write () და Wire.read () გამოიყენება ბრძანებების დასაწერად და სენსორის გამომავალი წაკითხვისთვის.
Serial.print () და Serial.println () გამოიყენება Arduino IDE– ის სერიულ მონიტორზე სენსორის გამომუშავების საჩვენებლად.
სენსორის გამოსავალი ნაჩვენებია ზემოთ მოცემულ სურათზე.
ნაბიჯი 4: პროგრამები:
MCP9808 ციფრული ტემპერატურის სენსორს აქვს რამდენიმე ინდუსტრიული დონის პროგრამა, რომელიც აერთიანებს სამრეწველო საყინულეებს და მაცივრებს სხვადასხვა კვების პროცესორებთან ერთად. ეს სენსორი შეიძლება გამოყენებულ იქნას სხვადასხვა პერსონალური კომპიუტერებისთვის, სერვერებისთვის და სხვა კომპიუტერული პერიფერიული მოწყობილობებისთვის.
გირჩევთ:
ოთახის ტემპერატურის და ტენიანობის მონიტორინგი ESP32 და AskSensors Cloud– ით: 6 ნაბიჯი
ოთახის ტემპერატურისა და ტენიანობის მონიტორინგი ESP32– ით და AskSensors Cloud– ით: ამ გაკვეთილში თქვენ ისწავლით თუ როგორ აკონტროლოთ თქვენი ოთახის ტემპერატურა და ტენიანობა DHT11– ისა და ღრუბელთან დაკავშირებული ESP32– ის გამოყენებით. ჩვენი გაკვეთილების განახლებები შეგიძლიათ იხილოთ აქ. DHT11 მახასიათებლები: DHT11 სენსორს შეუძლია გაზომოთ ტემპერატურა
ტემპერატურის მონიტორინგი MCP9808 და Raspberry Pi გამოყენებით: 4 ნაბიჯი
ტემპერატურის მონიტორინგი MCP9808 და Raspberry Pi გამოყენებით: MCP9808 არის უაღრესად ზუსტი ციფრული ტემპერატურის სენსორი ± 0.5 ° C I2C მინი მოდული. ისინი განსახიერებულია მომხმარებლის მიერ პროგრამირებადი რეგისტრებით, რომლებიც ხელს უწყობენ ტემპერატურის მგრძნობიარე პროგრამებს. MCP9808 მაღალი სიზუსტის ტემპერატურის სენსორი გახდა ინდუსტრია
ESP8266 ნოდემკუს ტემპერატურის მონიტორინგი DHT11– ის გამოყენებით ადგილობრივ ვებ სერვერზე - მიიღეთ ოთახის ტემპერატურა და ტენიანობა თქვენს ბრაუზერში: 6 ნაბიჯი
ESP8266 ნოდემკუს ტემპერატურის მონიტორინგი DHT11– ის გამოყენებით ადგილობრივ ვებ სერვერზე | მიიღეთ ოთახის ტემპერატურა და ტენიანობა თქვენს ბრაუზერში: გამარჯობა ბიჭებო, დღეს ჩვენ შევქმნით ტენიანობას & ტემპერატურის მონიტორინგის სისტემა ESP 8266 NODEMCU & DHT11 ტემპერატურის სენსორი. ტემპერატურა და ტენიანობა მიიღება DHT11 Sensor & ბრაუზერში ჩანს, რომელი ვებ გვერდი იქნება მართული
ტემპერატურის კითხვა LM35 ტემპერატურის სენსორის გამოყენებით Arduino Uno– ით: 4 ნაბიჯი
ტემპერატურის კითხვა LM35 ტემპერატურის სენსორის გამოყენებით Arduino Uno– ით: გამარჯობა ბიჭებო ამ ინსტრუქციებში ჩვენ ვისწავლით თუ როგორ გამოიყენოთ LM35 არდუინოსთან ერთად. Lm35 არის ტემპერატურის სენსორი, რომელსაც შეუძლია წაიკითხოს ტემპერატურის მნიშვნელობები -55 ° C– დან 150 ° C– მდე. ეს არის 3 ტერმინალური მოწყობილობა, რომელიც უზრუნველყოფს ტემპერატურის პროპორციულ ანალოგიურ ძაბვას. მაღალი
ტემპერატურის მონიტორინგი MCP9808 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ტემპერატურის მონიტორინგი MCP9808 და ნაწილაკების ფოტონის გამოყენებით: MCP9808 არის უაღრესად ზუსტი ციფრული ტემპერატურის სენსორი ± 0.5 ° C I2C მინი მოდული. ისინი განასახიერებენ მომხმარებლის მიერ პროგრამირებადი რეგისტრებით, რომლებიც ხელს უწყობენ ტემპერატურის მგრძნობიარე პროგრამებს. MCP9808 მაღალი სიზუსტის ტემპერატურის სენსორი გახდა ინდუსტრია