Სარჩევი:
- ნაბიჯი 1: საჭირო აპარატურა:
- ნაბიჯი 2: აპარატურის დაკავშირება:
- ნაბიჯი 3: ტემპერატურის გაზომვის კოდი:
- ნაბიჯი 4: პროგრამები:
ვიდეო: ტემპერატურის გაზომვა STS21 და ჟოლოს Pi გამოყენებით: 4 ნაბიჯი
2024 ავტორი: John Day | [email protected]. ბოლოს შეცვლილი: 2024-01-30 10:17
STS21 ციფრული ტემპერატურის სენსორი გთავაზობთ საუკეთესო შესრულებას და სივრცის დაზოგვის ნაკვალევს. ის უზრუნველყოფს დაკალიბრებულ, ხაზოვანი სიგნალებს ციფრულ, I2C ფორმატში. ამ სენსორის დამზადება ემყარება CMOSens ტექნოლოგიას, რაც STS21– ის მაღალ შესრულებასა და საიმედოობას ანიჭებს. STS21– ის რეზოლუცია შეიძლება შეიცვალოს ბრძანებით, დაბალი ბატარეის გამოვლენა და შემოწმება ხელს უწყობს კომუნიკაციის საიმედოობის გაუმჯობესებას.
ამ გაკვეთილში ნაჩვენებია STS21 სენსორული მოდულის ინტერფეისი ჟოლოს პი და მისი პროგრამირება პითონის ენის გამოყენებითაც არის ილუსტრირებული. ტემპერატურის მნიშვნელობების წასაკითხად, ჩვენ გამოვიყენეთ ჟოლოს პი I2c ადაპტერით. ეს I2C ადაპტერი სენსორულ მოდულთან კავშირს ხდის ადვილი და საიმედო.
ნაბიჯი 1: საჭირო აპარატურა:
მასალები, რომლებიც ჩვენ გვჭირდება ჩვენი მიზნის მისაღწევად, მოიცავს შემდეგ ტექნიკურ კომპონენტებს:
1. STS21
2. ჟოლო პი
3. I2C კაბელი
4. I2C ფარი ჟოლოს პი
5. Ethernet კაბელი
ნაბიჯი 2: აპარატურის დაკავშირება:
აპარატურის დაკავშირების განყოფილება ძირითადად განმარტავს გაყვანილობის კავშირებს სენსორსა და ჟოლოს პი შორის. სწორი კავშირების უზრუნველყოფა არის ძირითადი აუცილებლობა ნებისმიერ სისტემაზე მუშაობისას სასურველი გამომუშავებისთვის. ამრიგად, საჭირო კავშირები შემდეგია:
STS21 იმუშავებს I2C– ზე. აქ არის გაყვანილობის დიაგრამა, რომელიც აჩვენებს, თუ როგორ უნდა დააკავშიროთ სენსორის თითოეული ინტერფეისი.
ყუთის გარეშე, დაფა კონფიგურირებულია I2C ინტერფეისისთვის, ამიტომ ჩვენ გირჩევთ გამოიყენოთ ეს კავშირი, თუ სხვაგვარად ხართ აგნოსტიკოსი. ყველაფერი რაც თქვენ გჭირდებათ არის ოთხი მავთული!
მხოლოდ ოთხი კავშირია საჭირო Vcc, Gnd, SCL და SDA ქინძისთავები და ეს დაკავშირებულია I2C კაბელის დახმარებით.
ეს კავშირები ნაჩვენებია ზემოთ მოცემულ სურათებში.
ნაბიჯი 3: ტემპერატურის გაზომვის კოდი:
ჟოლოს pi გამოყენების უპირატესობა ის არის, რომ თქვენ გაძლევთ პროგრამირების ენის მოქნილობას, რომლითაც გსურთ დაფის დაპროგრამება სენსორის მასთან ინტერფეისის მიზნით. ამ დაფის ამ უპირატესობის გამოყენებით, ჩვენ ვაჩვენებთ მის პროგრამირებას პითონში. პითონი არის ერთ -ერთი ყველაზე მარტივი პროგრამირების ენა უმარტივესი სინტაქსით. STS21– ის პითონის კოდი შეიძლება გადმოწერილი იყოს ჩვენი github საზოგადოებიდან, რომელიც არის DCUBE Store Community.
ისევე როგორც მომხმარებლების სიმარტივისთვის, ჩვენ აქ განვმარტავთ კოდს:
როგორც კოდირების პირველი ნაბიჯი თქვენ უნდა გადმოწეროთ SMBus ბიბლიოთეკა პითონის შემთხვევაში, რადგან ეს ბიბლიოთეკა მხარს უჭერს კოდში გამოყენებულ ფუნქციებს. ასე რომ, ბიბლიოთეკის გადმოსაწერად შეგიძლიათ ეწვიოთ შემდეგ ბმულს:
pypi.python.org/pypi/smbus-cffi/0.5.1
თქვენ ასევე შეგიძლიათ დააკოპიროთ სამუშაო კოდი აქედან:
smbus- ის იმპორტი
იმპორტის დრო
# მიიღეთ I2C busbus = smbus. SMBus (1)
# STS21 მისამართი, 0x4A (74)
# აირჩიეთ ბრძანება
# 0xF3 (243) ტემპერატურის გაზომვა NO HOLD რეჟიმში
bus.write_byte (0x4A, 0xF3)
დრო. ძილი (0.5)
# STS21 მისამართი, 0x4A (74)
# მონაცემების უკან წაკითხვა, 2 ბაიტი, ჯერ MSB
data0 = bus.read_byte (0x4A)
მონაცემები 1 = bus.read_byte (0x4A)
# გადააკეთეთ მონაცემები
temp = (data0 * 256 + data1) & 0xFFFC
cTemp = -46.85 + (175.72 * ტემპი / 65536.0)
fTemp = cTemp * 1.8 + 32
# მონაცემების გამოტანა ეკრანზე
ბეჭდვა "ტემპერატურა ცელსიუსში არის: %.2f C" %cTemp
ბეჭდვა "ტემპერატურა ფარენჰეიტში არის: %.2f F" %fTemp
კოდი შესრულებულია შემდეგი ბრძანების გამოყენებით:
$> პითონი STS21.py gt; პითონი STS21.py
სენსორის გამომავალი ნაჩვენებია ზემოთ მოცემულ სურათზე მომხმარებლის მითითებისთვის.
ნაბიჯი 4: პროგრამები:
ციფრული ტემპერატურის სენსორი შეიძლება გამოყენებულ იქნას სისტემებში, რომლებიც საჭიროებენ მაღალი სიზუსტის ტემპერატურის მონიტორინგს. ის შეიძლება ჩაერთოს სხვადასხვა კომპიუტერულ აღჭურვილობაში, სამედიცინო აღჭურვილობაში და სამრეწველო კონტროლის სისტემებში, ტემპერატურის გაზომვის საჭიროებით დახვეწილი სიზუსტით.
გირჩევთ:
ტემპერატურის გაზომვა AD7416ARZ და ჟოლოს Pi გამოყენებით: 4 ნაბიჯი
ტემპერატურის გაზომვა AD7416ARZ და Raspberry Pi გამოყენებით: AD7416ARZ არის 10 ბიტიანი ტემპერატურის სენსორი, რომელსაც აქვს ოთხი ერთარხიანი ანალოგური ციფრული გადამყვანი და მასში შემავალი ტემპერატურის სენსორი. ნაწილების ტემპერატურის სენსორზე წვდომა შესაძლებელია მულტიპლექსერული არხებით. ეს მაღალი სიზუსტის ტემპერატურა
ტემპერატურის გაზომვა STS21 და არდუინო ნანოს გამოყენებით: 4 ნაბიჯი
ტემპერატურის გაზომვა STS21- ისა და არდუინო ნანოს გამოყენებით: STS21 ციფრული ტემპერატურის სენსორი გთავაზობთ საუკეთესო შესრულებას და სივრცის დაზოგვის ნაკვალევს. ის უზრუნველყოფს დაკალიბრებულ, ხაზოვანი სიგნალებს ციფრულ, I2C ფორმატში. ამ სენსორის დამზადება ემყარება CMOSens ტექნოლოგიას, რომელიც მიაკუთვნებს უპირატესობას
ტემპერატურის გაზომვა STS21 და ნაწილაკების ფოტონის გამოყენებით: 4 ნაბიჯი
ტემპერატურის გაზომვა STS21 და ნაწილაკების ფოტონის გამოყენებით: STS21 ციფრული ტემპერატურის სენსორი გთავაზობთ საუკეთესო შესრულებას და სივრცის დაზოგვის ნაკვალევს. ის უზრუნველყოფს დაკალიბრებულ, ხაზოვანი სიგნალებს ციფრულ, I2C ფორმატში. ამ სენსორის დამზადება ემყარება CMOSens ტექნოლოგიას, რომელიც მიაკუთვნებს უპირატესობას
ტენიანობის და ტემპერატურის გაზომვა HTS221 და ჟოლოს Pi გამოყენებით: 4 ნაბიჯი
ტენიანობის და ტემპერატურის გაზომვა HTS221 და Raspberry Pi გამოყენებით: HTS221 არის ულტრა კომპაქტური capacitive ციფრული სენსორი ფარდობითი ტენიანობისა და ტემპერატურისათვის. იგი მოიცავს შეგრძნების ელემენტს და შერეული სიგნალის პროგრამის სპეციფიკურ ინტეგრირებულ წრეს (ASIC), რათა უზრუნველყოს გაზომვის ინფორმაცია ციფრული სერიული საშუალებით
ტემპერატურის გაზომვა TMP112 და ჟოლოს Pi გამოყენებით: 4 ნაბიჯი
ტემპერატურის გაზომვა TMP112 და Raspberry Pi გამოყენებით: TMP112 მაღალი სიზუსტის, დაბალი სიმძლავრის, ციფრული ტემპერატურის სენსორი I2C MINI მოდული. TMP112 იდეალურია გაფართოებული ტემპერატურის გაზომვისთვის. ეს მოწყობილობა გთავაზობთ ± 0.5 ° C სიზუსტეს კალიბრაციის ან გარე კომპონენტის სიგნალის კონდიცირების მოთხოვნის გარეშე. მე