Სარჩევი:
ვიდეო: ნაწილაკების ფოტონი - STS21 ტემპერატურის სენსორის გაკვეთილი: 4 ნაბიჯი
2024 ავტორი: John Day | [email protected]. ბოლოს შეცვლილი: 2024-01-30 10:17
STS21 ციფრული ტემპერატურის სენსორი გთავაზობთ საუკეთესო შესრულებას და სივრცის დაზოგვის ნაკვალევს. ის უზრუნველყოფს დაკალიბრებულ, ხაზოვანი სიგნალებს ციფრულ, I2C ფორმატში. ამ სენსორის დამზადება ემყარება CMOSens ტექნოლოგიას, რაც STS21– ის მაღალ შესრულებასა და საიმედოობას ანიჭებს. STS21– ის რეზოლუცია შეიძლება შეიცვალოს ბრძანებით, დაბალი ბატარეის გამოვლენა და შემოწმება ხელს უწყობს კომუნიკაციის საიმედოობის გაუმჯობესებას. აქ არის მისი დემონსტრირება, რომელიც აერთიანებს მას ნაწილაკ ფოტონთან.
ნაბიჯი 1: რაც გჭირდებათ..
1. ნაწილაკების ფოტონი
2. STS21
3. I²C კაბელი
4. ნაწილაკების ფოტონის I²C ფარი
ნაბიჯი 2: კავშირი:
აიღეთ I2C ფარი ნაწილაკების ფოტონისთვის და ნაზად გადაიტანეთ იგი ნაწილაკების ფოტონის ქინძისთავებზე.
შემდეგ დააკავშირეთ I2C კაბელის ერთი ბოლო STS21 სენსორთან და მეორე ბოლო I2C ფარს.
კავშირები ნაჩვენებია ზემოთ მოცემულ სურათზე.
ნაბიჯი 3: კოდი:
ნაწილაკების კოდი STS21– ისთვის შეგიძლიათ გადმოწეროთ ჩვენი GitHub საცავიდან- Dcube Store.
აქ არის იგივე ბმული:
github.com/DcubeTechVentures/STS21
ჩვენ გამოვიყენეთ ორი ბიბლიოთეკა ნაწილაკების კოდისთვის, რომლებიც არის application.h და spark_wiring_i2c.h. Spark_wiring_i2c ბიბლიოთეკა საჭიროა სენსორთან I2C კომუნიკაციის გასაადვილებლად.
თქვენ ასევე შეგიძლიათ დააკოპიროთ კოდი აქედან, იგი მოცემულია შემდეგნაირად:
// განაწილებულია თავისუფალი ნების ლიცენზიით.
// გამოიყენეთ იგი ნებისმიერი ფორმით, როგორც გსურთ, მოგებით ან უფასოდ, იმ პირობით, რომ იგი ჯდება ლიცენზიებთან დაკავშირებული სამუშაოებისათვის.
// STS21
// ეს კოდი შექმნილია Dcube მაღაზიაში ხელმისაწვდომი STS21_I2CS I2C მინი მოდულთან მუშაობისთვის.
#ჩართეთ
#ჩართეთ
// STS21 I2C მისამართი არის 0x4A (74)
#განსაზღვრეთ დამატება 0x4A
float cTemp = 0.0;
ბათილად დაყენება ()
{
// ცვლადის დაყენება
ნაწილაკი. ცვლადი ("i2cdevice", "STS21");
ნაწილაკი. ცვლადი ("cTemp", cTemp);
// I2C კომუნიკაციის ინიციალიზაცია, როგორც MASTER
Wire.begin ();
// დაიწყეთ სერიული კომუნიკაცია, დააყენეთ baud rate = 9600
სერიული.დაწყება (9600);
დაგვიანება (300);}
ბათილი მარყუჟი ()
{
ხელმოუწერელი int მონაცემები [2];
// დაიწყეთ I2C გადაცემა
Wire.beginTransmission (addr);
// აირჩიეთ no hold master
Wire.write (0xF3);
// დასრულება I2C გადაცემა
Wire.endTransmission ();
დაგვიანება (500);
// მოითხოვეთ მონაცემების 2 ბაიტი
მავთული. მოთხოვნა (addr, 2);
// წაიკითხეთ 2 ბაიტი მონაცემები
თუ (Wire. Available () == 2)
{
მონაცემები [0] = Wire.read ();
მონაცემები [1] = Wire.read ();
}
// მონაცემების კონვერტაცია
int rawtmp = მონაცემი [0] * 256 + მონაცემი [1];
int მნიშვნელობა = rawtmp & 0xFFFC;
cTemp = -46.85 + (175.72 * (მნიშვნელობა / 65536.0));
float fTemp = cTemp * 1.8 + 32;
// მონაცემების გამოტანა საინფორმაციო დაფაზე
Particle.publish ("ტემპერატურა ცელსიუსში:", სიმებიანი (cTemp));
Particle.publish ("ტემპერატურა ფარენჰეიტში:", სიმებიანი (fTemp));
დაგვიანება (1000);
}
ნაბიჯი 4: პროგრამები:
ციფრული ტემპერატურის სენსორი შეიძლება გამოყენებულ იქნას სისტემებში, რომლებიც საჭიროებენ მაღალი სიზუსტის ტემპერატურის მონიტორინგს. ის შეიძლება ჩაერთოს სხვადასხვა კომპიუტერულ აღჭურვილობაში, სამედიცინო აღჭურვილობაში და სამრეწველო კონტროლის სისტემებში, ტემპერატურის გაზომვის საჭიროებით დახვეწილი სიზუსტით.
გირჩევთ:
ნაწილაკების ფოტონი - TCN75A ტემპერატურის სენსორის გაკვეთილი: 4 ნაბიჯი
ნაწილაკების ფოტონი-TCN75A ტემპერატურის სენსორის სახელმძღვანელო: TCN75A არის ორ მავთულის სერიული ტემპერატურის სენსორი, რომელიც ჩართულია ტემპერატურის ციფრულ გადამყვანთან. იგი ჩართულია მომხმარებლის პროგრამირებადი რეგისტრებით, რომლებიც უზრუნველყოფენ მოქნილობას ტემპერატურის მგრძნობიარე პროგრამებისთვის. რეგისტრაციის პარამეტრები საშუალებას აძლევს მომხმარებლებს
ნაწილაკების ფოტონი - ADT75 ტემპერატურის სენსორის გაკვეთილი: 4 ნაბიჯი
ნაწილაკების ფოტონი - ADT75 ტემპერატურის სენსორის სახელმძღვანელო: ADT75 არის უაღრესად ზუსტი, ციფრული ტემპერატურის სენსორი. იგი მოიცავს დიაპაზონის ტემპერატურის სენსორს და 12 ბიტიან ციფრულ ციფრულ გადამყვანს ტემპერატურის მონიტორინგისა და ციფრების გასაუმჯობესებლად. მისი უაღრესად მგრძნობიარე სენსორი მას საკმარისად კომპეტენტურს ხდის ჩემთვის
ნაწილაკების ფოტონი - HDC1000 ტემპერატურის სენსორის გაკვეთილი: 4 ნაბიჯი
ნაწილაკების ფოტონი - HDC1000 ტემპერატურის სენსორის გაკვეთილი: HDC1000 არის ციფრული ტენიანობის სენსორი ინტეგრირებული ტემპერატურის სენსორით, რომელიც უზრუნველყოფს გაზომვის შესანიშნავ სიზუსტეს ძალიან დაბალი სიმძლავრის დროს. მოწყობილობა ზომავს ტენიანობას ახალი capacitive სენსორის საფუძველზე. ტენიანობისა და ტემპერატურის სენსორები არის
ნაწილაკების ფოტონი - MPL3115A2 ზუსტი სიმაღლემეტრის სენსორი გაკვეთილი: 4 ნაბიჯი
ნაწილაკების ფოტონი - MPL3115A2 ზუსტი სიმაღლის მრიცხველის სენსორი: MPL3115A2 იყენებს MEMS წნევის სენსორს I2C ინტერფეისით, რათა უზრუნველყოს წნევის/სიმაღლისა და ტემპერატურის ზუსტი მონაცემები. სენსორის გამოსასვლელი ციფრულდება მაღალი რეზოლუციის 24-ბიტიანი ADC საშუალებით. შიდა დამუშავება ამოიღებს კომპენსაციის ამოცანებს
ნაწილაკების ფოტონი - TMP100 ტემპერატურის სენსორის გაკვეთილი: 4 ნაბიჯი
ნაწილაკების ფოტონი-TMP100 ტემპერატურის სენსორის გაკვეთილი: TMP100 მაღალი სიზუსტის, დაბალი სიმძლავრის, ციფრული ტემპერატურის სენსორი I2C MINI მოდული. TMP100 იდეალურია გაფართოებული ტემპერატურის გაზომვისთვის. ეს მოწყობილობა გთავაზობთ accuracy 1 ° C სიზუსტეს კალიბრაციის ან გარე კომპონენტის სიგნალის კონდიცირების მოთხოვნის გარეშე. ის